重温数据结构-图
10 min
图
有n个点,n(n-1)/2条边的图为完全无向图。
有n个点,n(n-1)条边的图为完全有向图。
简单路径:路径序列中,顶点不重复出现的路径。
简单回路:除了起点和终点外,其余顶点不重复出现。
连通图:在无向图中,若任意一对顶点都存在路径,则称其为连通图,否则为非连通图。
连通分量:无向图中的极大连通子图。极大连通子图包含所有连通的顶点以及和这些顶点相关联的所有边。
强连通图:在有向图中,若任意一对顶点都存在路径,则称其为强连通图,否则为非强连通图。
强连通分量:有向图中的极大强连通子图。极大强连通子图包含所有强连通的顶点以及和这些顶点相关联的所有边。
生成树:连通图的一个极小连通子图,包含图中所有顶点且有n-1条边。
生成森林:非连通图的极小连通子图,包含图中所有顶点且有n-k条边,k为连通分量个数。
#include<bits/stdc++.h>
using namespace std;
int n, m;
vector<bool> vis;
vector<vector<int>> adj;
bool find_edge(int u, int v)
{
for (int i = 0; i < adj[u].size(); ++i)
{
if (adj[u][i] == v)
{
return true;
}
}
return false;
}
void dfs(int u)
{
if (vis[u])
return;
vis[u] = true;
for (int i = 0; i < adj[u].size(); ++i)
dfs(adj[u][i]);
}
void bfs(int u)//广度优先搜索
#include<bits/stdc++.h>
using namespace std;
int n, m;
vector<bool> vis;
vector<vector<int>> adj;
bool find_edge(int u, int v)
{
for (int i = 0; i < adj[u].size(); ++i)
{
if (adj[u][i] == v)
{
return true;
}
}
return false;
}
void dfs(int u)
{
if (vis[u])
return;
vis[u] = true;
for (int i = 0; i < adj[u].size(); ++i)
dfs(adj[u][i]);
}
void bfs(int u)//广度优先搜索
{
vector<int> queue;
int front = 0, rear = 0;
queue.push_back(u);
rear++;
vis[u] = true;
while (front < rear)
{
int v = queue[front];
front++;
for (int i = 0; i < adj[v].size(); ++i)
{
int w = adj[v][i];
if (!vis[w])
{
queue.push_back(w);
rear++;
vis[w] = true;
}
}
}
}
int main()
{
cin >> n >> m;
vis.resize(n + 1);
adj.resize(n + 1);
for (int i = 1; i <= m; ++i)
{
int u, v;
cin >> u >> v;
adj[u].push_back(v);
}
return 0;
}//Prim算法
#include<bits/stdc++.h>
using namespace std;
int n, m;
vector<vector<int>> graph;
vector<bool> inMST;
vector<int> minEdge;
void Prim(int start)//时间复杂度:O(n^2)
{
inMST[start] = true;
for (int i = 1; i <= n; ++i)
{
minEdge[i] = graph[start][i];
}
for (int i = 1; i < n; ++i)
{
int u = -1;
int minWeight = INT_MAX;
for (int j = 1; j <= n; ++j)
{
if (!inMST[j] && minEdge[j] < minWeight)
{
minWeight = minEdge[j];
u = j;
}
//Prim算法
#include<bits/stdc++.h>
using namespace std;
int n, m;
vector<vector<int>> graph;
vector<bool> inMST;
vector<int> minEdge;
void Prim(int start)//时间复杂度:O(n^2)
{
inMST[start] = true;
for (int i = 1; i <= n; ++i)
{
minEdge[i] = graph[start][i];
}
for (int i = 1; i < n; ++i)
{
int u = -1;
int minWeight = INT_MAX;
for (int j = 1; j <= n; ++j)
{
if (!inMST[j] && minEdge[j] < minWeight)
{
minWeight = minEdge[j];
u = j;
}
}
if (u == -1)
break; // 图不连通
inMST[u] = true;
for (int v = 1; v <= n; ++v)
{
if (!inMST[v] && graph[u][v] < minEdge[v])
{
minEdge[v] = graph[u][v];
}
}
}
}
//使用优先队列优化的prim算法
void Prim_Optimized(int start)//时间复杂度:O(m log n)
{
priority_queue<pair<int, int>, vector<pair<int, int>>, greater<pair<int, int>>> pq;
inMST[start] = true;
for (int i = 1; i <= n; ++i)
{
if (graph[start][i] < INT_MAX)
pq.push({graph[start][i], i});
}
while (!pq.empty())
{
auto [weight, u] = pq.top();
pq.pop();
if (inMST[u])
continue;
inMST[u] = true;
for (int v = 1; v <= n; ++v)
{
if (!inMST[v] && graph[u][v] < INT_MAX)
{
pq.push({graph[u][v], v});
}
}
}
}//使用邻接表存储的prim算法
#include <bits/stdc++.h>
using namespace std;
int n, m;
struct Edge
{
int to;
int weight;
};
vector<vector<Edge>> adj; // 邻接表,假设节点编号为 1..n
// 返回 MST 总权重,若图不连通则返回 -1;同时填 parent(父节点,root 的 parent = -1)
long long Prim_Simple(int start, vector<int> &parent)//时间复杂度:O(n^2)
{
vector<bool> inMST(n + 1, false);
vector<int> minEdge(n + 1, INT_MAX);
parent.assign(n + 1, -1);
minEdge[start] = 0;
long long total = 0;
for (int i = 1; i <= n; ++i)
{
int u = -1, best = INT_MAX;
for (int v = 1; v <= n; ++v)
{
//使用邻接表存储的prim算法
#include <bits/stdc++.h>
using namespace std;
int n, m;
struct Edge
{
int to;
int weight;
};
vector<vector<Edge>> adj; // 邻接表,假设节点编号为 1..n
// 返回 MST 总权重,若图不连通则返回 -1;同时填 parent(父节点,root 的 parent = -1)
long long Prim_Simple(int start, vector<int> &parent)//时间复杂度:O(n^2)
{
vector<bool> inMST(n + 1, false);
vector<int> minEdge(n + 1, INT_MAX);
parent.assign(n + 1, -1);
minEdge[start] = 0;
long long total = 0;
for (int i = 1; i <= n; ++i)
{
int u = -1, best = INT_MAX;
for (int v = 1; v <= n; ++v)
{
if (!inMST[v] && minEdge[v] < best)
{
best = minEdge[v];
u = v;
}
}
if (u == -1)
return -1; // 不连通
inMST[u] = true;
total += (best == INT_MAX ? 0 : best);
for (const auto &e : adj[u])
{
if (!inMST[e.to] && e.weight < minEdge[e.to])
{
minEdge[e.to] = e.weight;
parent[e.to] = u;
}
}
}
return total;
}
// 使用优先队列的 Prim(更快),返回 MST 权重或 -1(不连通),并填 parent
long long Prim_Optimized(int start, vector<int> &parent)//时间复杂度:O(m log n)
{
vector<bool> inMST(n + 1, false);
vector<int> minEdge(n + 1, INT_MAX);
parent.assign(n + 1, -1);
using P = pair<int, int>; // {weight, node}
priority_queue<P, vector<P>, greater<P>> pq;
minEdge[start] = 0;
pq.push({0, start});
long long total = 0;
int cnt = 0;
while (!pq.empty())
{
auto [w, u] = pq.top();
pq.pop();
if (inMST[u])
continue;
inMST[u] = true;
total += w;
++cnt;
for (const auto &e : adj[u])
{
if (!inMST[e.to] && e.weight < minEdge[e.to])
{
minEdge[e.to] = e.weight;
parent[e.to] = u;
pq.push({e.weight, e.to});
}
}
}
if (cnt != n)
return -1; // 不连通
return total;
}//Kruskal算法,时间复杂度:O(m log m)
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
const int MAXN = 100; // 假设最大节点数为 100
const int INF = 1e9; // 用于表示无穷大
int n; // 节点数
int graph[MAXN][MAXN]; // 邻接矩阵表示图
struct Edge {
int u, v, weight;
bool operator<(const Edge &other) const {
return weight < other.weight;
}
};
vector<Edge> edges; // 边列表
int parent[MAXN]; // 并查集父节点数组
int find(int x) {
if (parent[x] != x) {
parent[x] = find(parent[x]); // 路径压缩
}
return parent[x];
}
void unionSets(int x, int y) {
int rootX = find(x);
//Kruskal算法,时间复杂度:O(m log m)
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
const int MAXN = 100; // 假设最大节点数为 100
const int INF = 1e9; // 用于表示无穷大
int n; // 节点数
int graph[MAXN][MAXN]; // 邻接矩阵表示图
struct Edge {
int u, v, weight;
bool operator<(const Edge &other) const {
return weight < other.weight;
}
};
vector<Edge> edges; // 边列表
int parent[MAXN]; // 并查集父节点数组
int find(int x) {
if (parent[x] != x) {
parent[x] = find(parent[x]); // 路径压缩
}
return parent[x];
}
void unionSets(int x, int y) {
int rootX = find(x);
int rootY = find(y);
if (rootX != rootY) {
parent[rootY] = rootX; // 合并集合
}
}
long long Kruskal() {
// 初始化并查集
for (int i = 0; i < n; i++) {
parent[i] = i;
}
// 按权重排序边
sort(edges.begin(), edges.end());
long long mstWeight = 0;
int edgesUsed = 0; // 记录已使用的边数
for (const auto &edge : edges) {
if (find(edge.u) != find(edge.v)) {
unionSets(edge.u, edge.v);
mstWeight += edge.weight;
edgesUsed++;
if (edgesUsed == n - 1) break; // 提前结束
}
}
// 检查是否所有节点都连通
if (edgesUsed != n - 1) return -1; // 图不连通
return mstWeight;
}#define MAX_EDGE 100
#define MAX_VERTEX 100
#define MAX 9999
struct VEdge {
int fromV; // 起始顶点
int endV; // 终止顶点
int weight; // 边的权值
};
VEdge EdgeList[MAX_EDGE];
void GenSortEdge(MGraph G, VEdge EdgeList[]) {
int k = 0, i, j;
for (i = 0; i < G.vNum; i++) { // 边赋值
for (j = i; j < G.vNum; j++) {
if (G.arcs[i][j] != MAX) {
EdgeList[k].fromV = i;
EdgeList[k].endV = j;
EdgeList[k].weight = G.arcs[i][j];
k++;
}
}
}
for (i = 0; i < G.e - 1; i++) { // 边排序,这里用起泡排序,可以用其他排序方法替代
for (j = i + 1; j < G.e; j++) {
#define MAX_EDGE 100
#define MAX_VERTEX 100
#define MAX 9999
struct VEdge {
int fromV; // 起始顶点
int endV; // 终止顶点
int weight; // 边的权值
};
VEdge EdgeList[MAX_EDGE];
void GenSortEdge(MGraph G, VEdge EdgeList[]) {
int k = 0, i, j;
for (i = 0; i < G.vNum; i++) { // 边赋值
for (j = i; j < G.vNum; j++) {
if (G.arcs[i][j] != MAX) {
EdgeList[k].fromV = i;
EdgeList[k].endV = j;
EdgeList[k].weight = G.arcs[i][j];
k++;
}
}
}
for (i = 0; i < G.e - 1; i++) { // 边排序,这里用起泡排序,可以用其他排序方法替代
for (j = i + 1; j < G.e; j++) {
if (EdgeList[i].weight > EdgeList[j].weight) {
VEdge t = EdgeList[i];
EdgeList[i] = EdgeList[j];
EdgeList[j] = t;
}
}
}
}
void Kruskal(VEdge EdgeList[], int n, int e) {
int vset[MAX_VERTEX];
int i;
for (i = 0; i < n; i++) {
vset[i] = i; // 初始化vset
}
int k = 0, j = 0;
while (k < n - 1) {
int m = EdgeList[j].fromV, n_edge = EdgeList[j].endV;
int sn1 = vset[m]; // m所属集合
int sn2 = vset[n_edge]; // n所属集合
if (sn1 != sn2) { // 两个顶点属于不同的集合
printf("V%d -> V%d\n", m, n_edge);
k++;
for (i = 0; i < n; i++) {
if (vset[i] == sn2) { // 集合编号为sn2的全部改为sn1
vset[i] = sn1;
}
}
}
j++;
}
}#include <bits/stdc++.h>
using namespace std;
const int MAXV = 100;
const int MAX_VALUE = INT_MAX / 4;
int i, j, k;
int dist[MAXV][MAXV];
string path[MAXV][MAXV];
struct MGraph {
int vNum;
string vertex[MAXV];
int arc[MAXV][MAXV];
};
void Floyd(MGraph G)
{
for (i = 0; i < G.vNum; i++)
for (j = 0; j < G.vNum; j++)
{
dist[i][j] = G.arc[i][j];
if (dist[i][j] != MAX_VALUE)
path[i][j] = G.vertex[i] + G.vertex[j];
else
path[i][j] = "";
}
for (k = 0; k < G.vNum; k++)
#include <bits/stdc++.h>
using namespace std;
const int MAXV = 100;
const int MAX_VALUE = INT_MAX / 4;
int i, j, k;
int dist[MAXV][MAXV];
string path[MAXV][MAXV];
struct MGraph {
int vNum;
string vertex[MAXV];
int arc[MAXV][MAXV];
};
void Floyd(MGraph G)
{
for (i = 0; i < G.vNum; i++)
for (j = 0; j < G.vNum; j++)
{
dist[i][j] = G.arc[i][j];
if (dist[i][j] != MAX_VALUE)
path[i][j] = G.vertex[i] + G.vertex[j];
else
path[i][j] = "";
}
for (k = 0; k < G.vNum; k++)
for (i = 0; i < G.vNum; i++)
for (j = 0; j < G.vNum; j++)
if (dist[i][k] + dist[k][j] < dist[i][j])
{
dist[i][j] = dist[i][k] + dist[k][j];
path[i][j] = path[i][k] + path[k][j];
}
}
dijkstra算法:单源最短路径
#include <bits/stdc++.h>
using namespace std;
#define MAX_VERTEX 100
#define MAX 65535
typedef struct
{
int arcs[MAX_VERTEX][MAX_VERTEX];
int vNum;
} MGraph;
int FindMin(int Disk[], bool S[], int n)
{
int k = 0, min = MAX;
for (int i = 0; i < n; i++)
{
if (!S[i] && min > Disk[i])
{
min = Disk[i];
k = i;
}
}
if (min == MAX)
return -1;
return k;
#include <bits/stdc++.h>
using namespace std;
#define MAX_VERTEX 100
#define MAX 65535
typedef struct
{
int arcs[MAX_VERTEX][MAX_VERTEX];
int vNum;
} MGraph;
int FindMin(int Disk[], bool S[], int n)
{
int k = 0, min = MAX;
for (int i = 0; i < n; i++)
{
if (!S[i] && min > Disk[i])
{
min = Disk[i];
k = i;
}
}
if (min == MAX)
return -1;
return k;
}
void Print(int D[], int P[], int n)
{
for (int i = 0; i < n; i++)
{
cout << "V" << i << ": " << D[i] << "\tV" << i;
int pre = P[i];
while (pre != -1)
{
cout << "<-V" << pre;
pre = P[pre];
}
cout << endl;
}
}
void ShortPath(MGraph G, int v, int Disk[], int Path[])
{
bool S[MAX_VERTEX];
for (int i = 0; i < G.vNum; i++)
{
S[i] = false;
Disk[i] = G.arcs[v][i];
if (Disk[i] != MAX)
Path[i] = v;
else
Path[i] = -1;
}
S[v] = true;
Disk[v] = 0;
for (int i = 0; i < G.vNum; i++)
{
if ((v = FindMin(Disk, S, G.vNum)) == -1)
return;
S[v] = true;
for (int j = 0; j < G.vNum; j++)
{
if (!S[j] && (Disk[j] > G.arcs[v][j] + Disk[v]))
{
Disk[j] = G.arcs[v][j] + Disk[v];
Path[j] = v;
}
}
}
Print(Disk, Path, G.vNum);
}
void ShortPath_Optimized(MGraph G, int v, int Disk[], int Path[]){
bool S[MAX_VERTEX];
for(int i = 0;i < G.vNum;i++){
S[i] = false;
Disk[i] = G.arcs[v][i];
if(Disk[i] != MAX)
Path[i] = v;
else
Path[i] = -1;
}
S[v] = true;
Disk[v] = 0;
priority_queue<pair<int,int>,vector<pair<int,int>>,greater<pair<int,int>>> pq;
for(int i = 0;i < G.vNum;i++){
pq.push({Disk[i],i});
}
while(!pq.empty()){
auto p = pq.top();
pq.pop();
int u = p.second;
if(S[u]) continue;
S[u] = true;
for(int j = 0;j < G.vNum;j++){
if(!S[j] && (Disk[j] > G.arcs[u][j] + Disk[u])){
Disk[j] = G.arcs[u][j] + Disk[u];
Path[j] = u;
pq.push({Disk[j],j});
}
}
}
Print(Disk,Path,G.vNum);
}